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A B S T R A C T   

Public participation in research, or community science (CS), has an important role in advancing ecological 
research, especially data processing. CS contributions to camera trap studies have supported wildlife conser-
vation through the rapid processing of images and videos. However, more studies are needed to quantify the 
accuracy and efficiency of CS participation. We used a case study from Chicago Wildlife Watch, a Zooniverse 
project, to explore variability in image classification accuracy and assess efficiency of responsive retirement rules 
which dictate how many times an image is viewed and annotated. We found that CS participants were highly 
accurate when classifying empty (96.0 %) and commonly photographed species in our study area (60.14 % across 
all species). User agreement on species images most impacted classification accuracy, though accuracy was 
higher for those containing larger species and those annotated by more engaged participants. With respect to 
efficiency, we found that three consecutive ‘empty’ classifications from participants led to over 95 % classifi-
cation accuracy in empty images and if 7 participants agreed on a species present in an image, they were accurate 
98 % of the time, on average. These results further support the value of CS in ecological research and the value of 
applying unique project designs which consider occurrence of regional species and field systems (e.g. camera 
placement or ecosystem). Given these results, we encourage scientists to continue applying quantitative tech-
niques to custom design projects to effectively use CS participants' time and maximize data accuracy.   

1. Introduction 

Participatory community science (hereafter CS) has revolutionized 
ecological research and environmental education (Fraisl et al., 2022). 
Together, participants and scientists work to expand the collection of 
ecological data, data processing, and scientific engagement (Bonney 
et al., 2009; Frigerio et al., 2018). CS takes many forms, from active data 
collection to online data processing, (Eitzel et al., 2017) and has local to 
global impacts on ecological knowledge, conservation initiatives and 
community involvement in ecology (Louvrier et al., 2022; Sullivan et al., 
2009; Bonney et al., 2009). For example, iNaturalist is an online CS 
platform where participants report and identify observations of wildlife 
in their communities. This global dataset, unachievable without large- 
scale participation, supports scientists to track species phenology (Di 
Cecco et al., 2021), the occurrence of rare wildlife (Wilson et al., 2020), 

and species interactions (Gazdic and Groom, 2019). Zooniverse is 
another CS platform that has made public participation in ecological 
research (among other fields) widely accessible by offering an online 
interface where researchers create projects where public members can 
contribute to data processing by annotating and classifying images or 
videos (Simpson et al., 2014). The proliferation of projects like these has 
led to many exciting opportunities to collect and curate ecological data 
and information on motivations of CS volunteers. 

Though CS projects and platforms like these have undoubtedly 
become important to scientific research (Bonney et al., 2009), we 
require processes to validate and integrate these datasets into scientific 
workflows (Wiggins et al., 2011). An increasingly popular method for 
people to participate in CS ecology, which has lacked such validating 
processes, is the annotation of camera trap data (Green et al., 2020). 
Camera traps are a widely used, affordable tool that allows ecologists to 
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study spatiotemporal, behavioral, and ecological patterns in wildlife to 
support conservation and management (Rovero et al., 2013). CS 
participation in camera data annotation is especially valuable to scien-
tists as classifying these data is a time-consuming endeavor that typically 
requires professionals to visually examine thousands of individual im-
ages or videos (Swanson et al., 2015). Through this work, participants 
have supported scientists' efforts to understand animal distributions, 
movement, and behaviors (Lasky et al., 2021; Swanson et al., 2015; 
McCarthy et al., 2021). Participants can also benefit by gaining 
ecological knowledge and becoming more engaged with the scientific 
community via two-way communication and collaboration opportu-
nities (Lasky et al., 2021; Cox et al., 2015). 

Various platforms, including Zooniverse, have made CS participation 
in camera trap research especially successful (McShea et al., 2016). On 
Zooniverse, participants help to annotate species, individuals, or indi-
vidual characteristics such as injuries or age class (McCarthy et al., 2021; 
Jones et al., 2018; Thel et al., 2021). Though growing literature in this 
field has helped to remove bottlenecks in camera trap data processing 
(Egna et al., 2020; Gadsden et al., 2021), evaluating the accuracy of 
participants and classification workflows remains an important 
component to this research. Validating CS data processing ensures effi-
cient use of participants' time while maximizing the accuracy of an 
image's classification. Conventionally, camera trap projects hosted on 
Zooniverse set their images to retire between 15 and 25 aggregated 
classifications and may adopt additional ‘responsive retirement rules’ 
which allow images to retire more quickly if they reach certain 
consensus thresholds (personal communication; Gadsden et al., 2021). 
The use of custom retirement rules, which dictate how many times an 
image is classified, can help to increase classification efficiency, espe-
cially as the difficulty of species and empty image identification can 
greatly vary (Potter et al., 2019; Gadsden et al., 2021). Additionally, 
factors such as animal body size, distinguishing traits, or image quality 
can impact overall classification accuracy (Potter et al., 2019; Gadsden 
et al., 2021; Swanson et al., 2016; Murray et al., 2021). As such, there 
may be times when requiring a specific aggregated classification count is 
too much or too little. This may depend on the species in an image or the 
overall quality of the image itself. 

To further explore how variation in camera images impact classifi-
cation accuracy and the utility of responsive retirement rules, we con-
ducted a study within Chicago Wildlife Watch (hereafter CWW), a 
Zooniverse project. CWW is a camera trapping project led by the Lincoln 
Park Zoo to monitor biodiversity in the Chicago Metropolitan area, USA. 
We used these data to quantify how species, image, and volunteer traits 
were associated with classification accuracy. We hypothesized that 1) if 
the average size of species makes them easier to detect in an image, then 
participant accuracy will increase as the average body size of species 
increases, 2) if poor image quality can make it more difficult to either 
locate or identify a species, then participant accuracy will be lower in 
images that are blurred relative to clear images, and 3) if participants 
improve their classification accuracy through experiences (e.g. time), 
then participants with the most classifications will be the most accurate. 
In addition to testing these hypotheses, we also evaluated the efficiency 
of CWW's retirement rules which follow commonly retirement patterns 
of other camera trapping Zooniverse projects (Willi et al., 2018; personal 
communication). 

Our work aims to evaluate the biases in CS-based camera trap image 
classifications and outline additional analytical frameworks for re-
searchers interested in incorporating CS into camera trapping projects 
reliably. 

2. Materials and methods 

2.1. Chicago wildlife watch 

CWW (www.chicagowildlifewatch.org) was developed by the Urban 
Wildlife Institute (UWI) at the Lincoln Park Zoo, in collaboration with 

Zooniverse staff via the Project Builder Platform in 2014. Data on CWW 
are collected and managed by UWI as part of their long-term urban 
biodiversity monitoring project (see Magle et al., 2016 for sampling 
methodologies). Like other Zooniverse projects, CWW allows partici-
pants to identify wildlife species in photos. In addition to annotating 
camera trap images, CWW participants can learn about the project team, 
program objectives, and direct questions to the research team and one 
another in an open forum. While identifying images, participants can tag 
a single or multiple species (if they are present), indicate if young are 
present, or, if an image has no species, mark it as ‘empty’. Participants 
are not able to submit ‘unknown’ classifications and instead are 
encouraged to make their best guess about what the species may be. The 
species available for participants to annotate were chosen based on prior 
detections in the study area (2010–2014): human, beaver (Castor can-
adensis), skunk (Mephitis mephitis), bird (any species), livestock (any 
species), flying squirrel (Glaucomys volans), domestic cat (Felis catus), 
mink (Neovison vison), fox squirrel (Sciurus niger), chipmunk (Tamias 
striatus), mouse (family Muridae), gray squirrel (Sciurus carolinensis), 
coyote (Canis latrans), mower (human or mower visible), melanistic gray 
squirrel, deer (Odocoileus virginianus), muskrat (Ondatra zibethicus), tree 
squirrel (if squirrels cannot be identified to species), domestic dog (Canis 
lupus familiaris), opossum (Didelphis virginiana), weasel (if weasels 
cannot be identified to species), gray fox (Urocyon cinereoargenteus), 
rabbit (Sylvilagus floridanus), woodchuck (Marmota monax), red fox 
(Vulpes vulpes), raccoon (Procyon lotor), horse (Equus caballus), and rat 
(Rattus norvegicus). 

2.2. Image accuracy analysis 

To evaluate Zooniverse participant accuracy, classifications were 
validated against trained experts. Experts used a custom database to 
upload and classify camera trap images. Under this process, two expert 
reviewers examined each uploaded image. If both experts agreed on an 
image's classification, the image would retire as that classification. If 
there was disagreement between the two experts, the image moved to a 
validation step where a third expert would review the image and 
determine the final classification. We limited our analysis to images that 
were either empty or had a single species (98.7 % of images). Likewise, 
we limited Zooniverse classifications to only those associated with a 
Zooniverse account (87.3 % of participants), which allowed us to link 
classifications to a unique individual. Data from this study were classi-
fied by participants between June 2020 and May 2021. 

To address our hypotheses on how animal size, image quality, and 
participant experience impacted classification accuracy, we conducted 
two analyses using binomial generalized linear mixed models. First, we 
fitted a model to only images that trained experts classified as empty. 
This was done because empty images lack species trait data, e.g. animal 
weight. Second, we fitted a model to images trained experts had clas-
sified as not empty (i.e., wildlife was present). For both steps, the binary 
response value was 1 if a Zooniverse participant's classification matched 
that of the experts, and 0 if it did not. Likewise, we added a participant- 
level and site-level random effect to both models to account for variation 
among participants and across sampling sites. We also account for 
variation across species with a random effect in the species-level model. 

With respect to covariates included in the models, both models 
included a metric for image blurriness, participant engagement, and 
evenness of classification accuracy. Image blurriness was quantified 
using Python ver 3.10 with the OpenCV package ver 4.3.0. Images were 
converted into grayscale and a Laplacian kernel was applied to calculate 
the sharpness of image lines where lower Laplacian values indicate 
increased blurriness (Woods, 2012; Murray et al., 2021). As participants 
who engage more often on CWW may have greater classification accu-
racy, we created a continuous count variable to summarize participant 
engagement. To do this, we grouped data by participant and sorted them 
sequentially from the first image they classified to their last. We then 
numbered these images to represent the cumulative number of images 
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each participant saw while tagging images on CWW. We assumed that 
participants with higher counts were more engaged on CWW than par-
ticipants with low counts. We also used Pielou's evenness index to 
measure agreement on a single image's classification (Pielou, 1966). For 
this metric, a value of 1 indicates high evenness, or low classification 
agreement, while a 0 index indicates perfect agreement. In addition to 
these covariates, the species model also included the average log body 
weight of the species present in the image. 

2.3. Retirement accuracy analysis 

We developed CWW with custom retirement rules to determine when 
an image will be removed from the viewing or classification pool. We 
aimed to evaluate the effectiveness of retirement rules with consider-
ation of their conditional pattern (see below). To evaluate the accuracy 
of retirement rules, we use a binomial generalized linear model with a 
logit link. We used the same binary response as above, where the 
response value was a 1 if the retired classification matched that of the 
experts, and a 0 if it did not. We used the categorical retirement rules as 
predictor variables to estimate the accuracy of each rule and added a 
site-level random effect to account for variation across sampling sites. 
The retirement classifications were conditionally implemented, occur-
ring sequentially. The retirement conditions are as follows:  

1. If any participant classified a subject as ‘human’, the image retired as 
human, hereafter ‘human.’ 

2. If the first 3 participants classified the image as empty (consecu-
tively), the image retired as empty, hereafter ‘3 empty.’  

3. If 5 participants classified the image as empty (non-consecutively), 
the image retired as ‘empty’, hereafter ‘5 empty.’  

4. If 7 participants classified the same species (non-consecutively), the 
image retired when the seventh participant classified the consensus 
species, hereafter ‘7 species.’  

5. If images were not retired under the above conditions, images were 
classified by 15 participants and were retired as the classification 
with majority consensus, hereafter ‘classification count.’ 

Given this retirement pattern, the image identification difficulty may 
vary between different retirement steps and thus are non-independent. 
For example, images that contain non-human species and do not retire 
as a species under the ‘7 species’ rule, are likely more difficult to identify 
species or images. 

All models were fitted with the lme4 package in R ver. 4.1.1 (Bates 
et al., 2014). To assess model fit, we calculated MacFadden's pseudo-R2. 
Values >0.2 indicate a strong model fit (Domencich and McFadden, 
1975; Louviere et al., 2000). 

3. Results 

We analyzed 142,062 unique images which were annotated by 2755 
Zooniverse participants. The three most common image classifications 
by Zooniverse participants were: empty (n = 278,030), eastern gray 
squirrel (n = 76,774), and raccoon (n = 43,944), which matched the top 
three classifications among experts (n = 240,646, n = 100,180, n =
52,168; respectively). Note that unique images are classified by multiple 
participants on Zooniverse, thus the number of classifications is greater 
than the number of images (see retirement rules above). The three least 
commonly classified species by Zooniverse participants were: horse (n =
68), livestock (n = 161), and muskrat (n = 368). This differed from 
experts who least often classified: gray fox (n = 11), North American 
beaver (n = 14) and woodchuck (n = 46). CS participants' classification 
accuracy varied largely across species with flying squirrel, weasel (genus 
Mustela), and mouse as the most misidentified species (13.43 %, 22.73 
%, and 26.33 % correct respectively; Appendix S). Although common 
urban mammals like white-tailed deer or raccoon often had the highest 
classification accuracy, less common species with distinguishing 

features, like the striped skunk, were also classified by Zooniverse par-
ticipants with high accuracy (79.10 %). 

3.1. Image accuracy analysis 

We found the empty image model to strongly fit the data with a 
MacFadden's pseudo-R2 of 0.53. We note that this analysis had a large 
sample size, thus the errors associated with our fixed effects are likely 
over-precise. Overall, Zooniverse participants were 99.62 % accurate at 
classifying empty images. Based on our binomial generalized linear 
mixed model, we found support that evenness was negatively associated 
with participant accuracy of empty photos (β = − 1.67, 95 % CI = − 1.70, 
− 1.64; Fig. 1). For example, an empty image with perfect agreement 
among participants (i.e., evenness = 0) had a mean accuracy of 1.00, 
(95 % CI = 1.00, 0.99), which was roughly 2.83 times higher than an 
empty image with total disagreement among participants (i.e., evenness 
= 1; 0.36, 95 % CI = 0.80, 0.07). We found that participant engagement 
had a significant, but relatively small negative effect on classification 
accuracy (β = − 0.17, 95 % CI = − 0.23, − 0.11) while image blurriness 
had a significant, but small positive effect on accuracy (β = 0.08, 95 % 
CI = 0.05, 0.12). Through the application of random effects, we found 
that the classification accuracy of empty images varied more by par-
ticipants (sd = 1.42) than by differences in camera locations (sd = 0.28). 

For our species image analysis, we calculated a MacFadden's pseudo- 
R2 of 0.24, indicating a good model fit. We found that evenness, 
participant engagement, and animal weight were strong predictors of 
participant accuracy. Image blurriness had a positive but small effect on 
accuracy (β =0 0.06, 95 % CI = 0.04, 0.07). Evenness negatively affected 
the accuracy of species classifications (β = − 1.10, 95 % CI = − 1.12, 
− 1.09) whereas increasing animal weight generally increased classifi-
cation accuracy (β =0 0.51, 95 % CI = 0.24, 0.77; Fig. 2). As predicted, 
classification accuracy increased with participant engagement (β = 0.34, 
95 % CI = 0.32, 0.36). The random effect structure of our species-level 
model revealed that classification accuracy varied most among partici-
pants (sd = 0.86, assuming normal variation in accuracy on the logit 
scale) and less so across species (sd = 0.60) and camera locations (sd =

Fig. 1. Zooniverse participants more accurately classified empty images 
correctly when the aggregated image classifications among participants had 
more agreement (i.e., evenness = 0) whereas images with more disagreement 
among participants (i.e. evenness =1) were about 2.8 times less accurate. The 
solid horizontal line of this figure represents the median estimate from the 
model while the shaded ribbon is the 95 % confidence interval. Other model 
covariates were held at their mean value. 
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0.31). 

3.2. Retirement accuracy analysis 

The most common retirement rule implemented was ‘3 empty’ (the 
first 3 participants classified the image as empty), followed by ‘7 species’ 
(7 participants classified the same animal), ‘human’ (any participant 
classified a subject as ‘human’), ‘5 empty’ (5 participants classified the 
image as empty), and ‘classification count’ (15 participants classified an 
image; Table 1). If we had implemented the ‘3 empty’ rule alone, which 
was 95.96 % accurate, Zooniverse participants would have saved over 
1,000,000 views of camera trap images then if these images has retired 
solely under the ‘classification count’ rule (e.g. sending these images to 
15 participants). We calculated a MacFadden's pseudo-R2 of 0.23 for the 
retirement model, indicating a good fit. We found that the three most 
commonly implemented retirement rules, ‘3 empty’, ‘7 species’, and 
‘human’, had over 90 % classification accuracy by participants 
(Table 1). Species which retired under the ‘7 species’ rule were viewed 
by <9 people on average (mean = 8.8 classifications). Accuracy was 
lowest for the ‘5 empty’ retirement rule (57.23 %), indicating that if an 
image does not retire from the ‘3 empty’ rule, it likely contains an animal 
species. Therefore, the ‘5 empty’ rule may be less useful, especially as it 
is the second least frequently used retirement rule. 

Accuracy varied among species retired with the ‘7 species’ and 
‘classification count’ rules (Fig. 3; Appendix S). For the ‘7 species’ rule, 
species with the lowest accuracy (<65 %) were predominantly rare 
species, or species with fewer than 200 total image detections. This 
included North American beaver, gray fox, red fox and American mink. 
However, one rare species, woodchuck, and one rare family, weasel 

(Mustelids), had perfect accuracy (p = 1.0) within the ‘7 species’ rule. 
Other species identified at high accuracy within this rule included stri-
ped skunk, raccoon, white-tailed deer, domestic dog, Virginia opossum, 
and Eastern cottontail (accuracy >0.99). For the ‘classification count’ 
rule, accuracy of species classifications by participants was highly var-
iable, indicating this retirement rule was less reliable than the others. 
Four species were classified with perfect accuracy within this rule: 
American mink, domestic dog, Eastern chipmunk and North American 
beaver. There was no clear pattern in how rarity of species may impact 
the accuracy of retirement within this rule. 

4. Discussion 

Engaging public participants in CS camera trap projects positively 

Fig. 2. Zooniverse participants were less accurate with classifying photos with species if the aggregated participant classifications had high evenness (i.e., more 
disagreement). Furthermore, Zooniverse participants more accurately classified species that are larger. The solid horizontal lines of each subplot represent median 
estimates from the model while the shaded ribbons are 95 % confidence intervals. Points indicate individual species weights. Other model covariates were held at 
their mean value. 

Table 1 
Table summarizing retirement rule frequency (the count of images retired out of 
141,994 images), accuracy (estimate of participant accuracy), and confidence 
intervals around that accuracy estimate.  

Retirement rules Rule 
frequency 

Accuracy 95 % CI 
lower 

95 % CI 
upper 

3 empty 81,602  95.96  95.32  96.52 
5 empty 8104  57.23  53.33  61.03 
7 species 35,486  98.23  97.92  98.50 
Classification 

count 
725  83.82  80.46  86.70 

Human 16,077  90.42  88.93  91.74  

Fig. 3. The variation of participant accuracy, or the probability of Zooniverse 
participants correctly classifying images, across species for the retirement rules 
‘7 species’ and ‘classification count’. Colors of points indicate whether the 
species had low accuracy (p < 0.9), high accuracy (p ≥ 0.9), or were rare 
species (n < 200 images). Rare species are labeled. An among-species mean is 
also included with horizontal lines above and below to indicate the 95 % 
confidence interval. 
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contributes to ecological research, specifically through data processing 
(McCarthy et al., 2021; Swanson et al., 2016; Gadsden et al., 2021). 
Participants on CWW were accurate image classifiers. As few as three 
annotations from Zooniverse participants, for example, could produce 
highly accurate classifications for empty images. As empty images 
represent the majority of images collected during camera trapping sur-
veys, this represents a phenomenal increase in the speed CS participants 
could collectively process images with little decrease in accuracy. 
Additionally, species which retired under the ‘7 species’ rule were also 
highly accurate for commonly seen (e.g. white-tailed deer) and distin-
guishable species (e.g. striped skunk). These results highlight Zooniverse 
participant's ability to annotate images (for at least our study species) 
efficiently. Thus, customizable retirement rules are central to improving 
CS processing time of empty images, as well as common and distin-
guishable species. 

In testing our hypotheses, we found that image evenness, or measure 
of agreement, had an inverse relationship with classification accuracy (i. 
e., as agreement decreased, accuracy decreased) for both empty and 
species-present images. These results align with previous studies 
(Swanson et al., 2016; Gadsden et al., 2021) and we encourage future 
projects to use evenness as a threshold to accept aggregated classifica-
tions by participants. Exact thresholds should be determined by project 
specific goals and rarity of species of interest (Swanson et al., 2016). 
Though we confirmed that increasing animal weight improved overall 
accuracy (Potter et al., 2019), we believe evenness is a more reliable 
measure given that certain species characteristics, such as rarity, highly 
impact classification accuracy. For example, American beavers were one 
of the largest species captured in CWW images but had <0.4 accuracy in 
our species-level model likely due to their rarity (n = 5 unique images). 
The importance of rarity, as highlighted in other studies (Clare et al., 
2019), was further emphasized in our retirement accuracy analysis, 
specifically with the ‘7 species’ retirement rule. We found that species 
with the lowest accuracy (bottom four) were all rare species, except for 
woodchuck and weasel (not classified to species), which had perfect 
detection accuracy. These results indicate that rare species generally 
require trained expert review. We therefore encourage future studies to 
generate regionally specific lists of common and rare species and use 
these as guides to either accept or review CS classified images. 

Given that our case study is limited to one ecological system, other 
CS camera trap projects should conduct similar statistical analyses that 
are curated towards their study species and sampling environments. Our 
analysis suggests the utility of two unique retirement rules, one for 
empty images and another for species-present images. Given the high 
classification accuracy for empty images, we believe the ‘3 empty’ 
retirement rule, where three people consecutively annotate and retire an 
image as ‘empty’, may be effective for most studies. Researchers who 
collect images with distant field-of-views (cameras placed high to cap-
ture distant background areas), may need to consider a higher threshold 
(such as 5 consecutive empties) to account for increased likelihood of 
false ‘empty’ classifications (Egna et al., 2020). We found that if there 
was disagreement within the first three images, there was likely an an-
imal present, as indicated by the low accuracy found in the ‘5 empty’ 
rule. Low accuracy in the ‘5 empty’ rule may also indicate these images 
are more difficult to identify as empty, or that there are inaccuracies 
within expert classifications. However, participants failing to detect an 
animal are more common than experts falsely detecting an animal in a 
truly empty image (personal observation). For species-present images, 
we found that an average of 9 classifiers was sufficient to accurately 
classify the majority of species, similar to results found by Swanson et al. 
(2016). In our study, the ‘7 species’ retirement rule was highly effective, 
leaving few images to retire under the last, ‘catch-all’ rule, ‘classification 
count’ (725 of 140 thousand images). Though these retirement rules 
cannot be compared independently given the conditional nature of their 
implementation, our results indicate that most images are retired before 
images reach 15 classifiers. We note that images which retired under the 
‘classification count’ rule are likely to be difficult to annotate images and 

thus require expert review. As an alternative to increasing an image's 
viewing pool (or number of classifiers), we recommend calculating 
evenness across aggregated images and using this value as a threshold to 
reject or accept CS participant classifications for a given image. To 
determine this threshold and the accuracy of the retirement rules we 
used, we recommend all projects to maintain a pool of expertly classified 
data (classified by >2 experts) for comparative analyses (Swanson et al., 
2016). 

In summary, we recommend the following steps. First project man-
agers should maintain an expert pool of annotated data (where at least 
two experts annotate a single image). We recognize that expertly clas-
sified data is also subject to misclassification, and suggest that 
depending on downstream objectives and analyses, it may be useful to 
account for this through model-based solutions (Clare et al., 2021). The 
proportion of expertly annotated images has varied study to study, 
where Swanson et al., analyzed 0.35 % of their 1.2 million images and 
Gadsden et al., 56.22 % of 10,199 images. Here, we recommend studies 
with <10,000 images to annotate 50 % of images and studies >10,000 
images to maintain a minimum of 5000 images with the addition of any 
images annotated with rare species. A rare species list should be 
generated by project managers based on their knowledge of the area and 
history of annotated species. Projects may begin by implementing one to 
two types of retirement rules, one for empty images (3–5 consecutive 
‘empty’ tags), and another for species. The agreement of 7 species 
classifications was sufficient for our ecosystem, however new projects 
may find it useful to implement only an empty image retirement rule 
while retiring all other images at 10 classifications to determine a 
species-specific retirement rule most useful for their ecosystem and 
project aims (such as 7 participants classifying the same species). 
Additionally, any images which retire as a rare species or fall above a 
relevant evenness threshold, should be reviewed by experts. The expert 
pool of data can be used to determine an appropriate evenness 
threshold, though <0.5 has been recommended by others (Swanson 
et al., 2016). 

While we did not assess this with our study, it is necessary to mention 
that Machine Learning (ML) is an additional tool that can be considered 
in CS camera trapping workflows. ML in camera trapping commonly 
uses deep learning algorithms trained on large datasets of images to 
rapidly classify camera trap data (Norouzzadeh et al., 2020). Various 
organizations, including Zooniverse, are harnessing ML to support effi-
cient classifications of project image data (Vélez et al., 2022a). However, 
the success of ML is limited by the diversity represented in trained image 
datasets, both in terms of species present and geographic coverage. For 
example, geographical variation between trained and applied datasets 
can impact classification accuracy which may be driven by differences in 
backgrounds or dominant features (habitat type, presence of rocks or 
trees, etc.) or environmental conditions (light or climate; Schneider 
et al., 2020). Therefore, CS participation on untrained datasets is espe-
cially useful and can be applied in tandem with ML. This dual applica-
tion can speed up image processing and allow participants to grow 
trained datasets to verify and improve ML classification accuracy for 
their specific project (Vélez et al., 2022b). For example, to further in-
crease the annotation of images in a CS project, a researcher may want to 
use ML to filter out empty images which were identified with high 
confidence, send the remaining images to CS participants for further 
validation, and then manually validate images with low participant 
agreement or of rare species. 

Overall, our results highlight the value of public participation in 
camera data processing. We believe that successful CS projects value 
participants' contributions, and project leaders can support their par-
ticipants by developing streamlined workflows and improving two-way 
communication. We encourage project leaders to provide training tools 
and regular feedback as to how their work is contributing to ongoing 
research to maximize project success and engagement. Specifically, 
communication with highly engaged participants could significantly 
contribute to participant accuracy as found in this study. Examples could 
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include development of thorough tutorials (Cox et al., 2015), regular 
communication with participants via blog posts, forums, or access to 
scientific communications (advertising presentations, workshops, etc.) 
that address project goals, updates, successes, and impacts on ecology 
and conservation. Together, community participants and ecologists 
have power neither group has separately, and the more efficient these 
collaborations, the more we can accelerate scientific discovery and 
innovation. 
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